

Copper-Catalyzed Intermolecular Trifluoromethylarylation of Alkenes: Mutual Activation of Arylboronic Acid and \textsf{CF}_{3}^+ Reagent

Fei Wang, Dinghai Wang, Xin Mu, Pinhong Chen, and Guosheng Liu*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Che[mis](#page-3-0)try, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032

S Supporting Information

[AB](#page-3-0)STRACT: [A](#page-3-0) [novel](#page-3-0) [cop](#page-3-0)per-catalyzed intermolecular trifluoromethylarylation of alkenes is developed using less active ether-type Togni's reagent under mild reaction conditions. Various alkenes and diverse arylboronic acids are compatible with these conditions. Preliminary mechanistic studies reveal that a mutual activation process between arylboronic acid and CF_{3}^+ reagent is essential. In addition, the reaction might involve a rate-determining transmetalation, and the final aryl C−C bond is derived from reductive elimination of the $aryl(alkyl)Cu(III)$ intermediate.

 \blacksquare he rich variety of CF₃-containing molecules that occur as pharmaceuticals and agriculture chemicals has inspired considerable interest in the development of new methods for their synthesis.¹ Among them, direct introduction of the CF_3 group into organic compounds is particularly attractive. 2 For instance, copp[e](#page-3-0)r-catalyzed trifluoromethylation has received much attention for the synthesis of CF_3 -containing ar[om](#page-3-0)atic and aliphatic compounds. $3,4$ In 2012, our group reported the first intramolecular trifluoromethylarylation of activated alkenes using a Pd catalyst to [ge](#page-3-0)nerate a series of CF_3 -containing oxindole derivatives.⁵ Later, Sodeoka⁶ demonstrated that a similar transformation could be achieved using Cu(I)/Togni's reagent. Nevado⁷ [dis](#page-3-0)covered a Cu-[ca](#page-3-0)talyzed intramolecular trifluoromethylarylation of alkenes involving a 1,4-aryl migration and desulfonylat[io](#page-3-0)n process. Related intramolecular 1,2-aryl migrations were also described by Wu,^{8a} Tu,^{8b} and Sodeoka.^{8c} All those aryl transfers were proposed to follow a radical process. We speculated that, if this arylation c[ou](#page-3-0)ld [be](#page-3-0) expanded t[o](#page-3-0) an intermolecular process, a large number of vicinal CF_3 - and arylcontaining aliphatic compounds could be easily obtained from various simple alkenes. However, a related intermolecular reaction involving coupling of three or more components is much more challenging and remains an underdeveloped process. Here we report a novel Cu-catalyzed intermolecular trifluoromethyl-arylation of alkenes using arylboronic acid as arylation reagent, in which mutual activation of arylboronic acid and $\mathrm{CF_{3}^+}$ reagent is identified as an essential step. More importantly, preliminary studies reveal that a rate-determining transmetalation is involved, with the final aryl C−C bond derived from reductive elimination of an aryl(alkyl)Cu(III) intermediate, rather than the previously suggested radical pathway.

Based on our group's recent success in developing intermolecular difunctionalization of alkenes,⁹ we found that TMSNu

Scheme 1. Intermolecular Difunctionalization of Alkenes

($Nu = N₃$, CN) acts as a Lewis acid to activate the ether-type Togni's reagent (2a) and that the final C−N and C−C bond is derived from an alkyl radical or carbon cation intermediate (top, Scheme 1). In addition, Szabó demonstrated that B_2pin_2 could accelerate the Cu-catalyzed trifluoromethylation of alkenes using Togni's reagent as a CF_3 source.^{4p,9c} We envisioned that, similar to TMSNu, arylboronic reagent could also activate the CF_3^+ reagent $2a$ to release a $CF₃$ r[adica](#page-3-0)l in the presence of a Cu catalyst. Notably, the reaction could simultaneously generate an activated arylboronic reagent, which might react with the abovementioned alkyl radical or carbon cation intermediate or with a Cu catalyst to form a $C_{\text{alkyl}}-C_{\text{arvl}}$ bond (bottom, Scheme 1). If so, then a three-component intermolecular reaction might be expected. To test this hypothesis, initial studies were focused on the reaction of styrene 1a with Togni's reagent 2a and $PhB(OH)$ ₂ 3a in the presence of a Cu catalyst. We are delighted to find that the desired trifluoromethylarylation product 4a was indeed observed. After extensive screening of different reaction parameters, the optimized reaction conditions were found to provide the desired product 4a in 76% yield (entry 1, Table 1). Some essential observations: (1) When other CF_{3}^+ reagents 2b and 2c were employed, no reaction occurred (entry 2). [\(2](#page-1-0)) PhBPin and $PhBF_3K$ were inactive (entry 3). (3) Other types of arylmetallic reagents, such as $PhSnBu₃$ and $PhSiMe₃$, failed to yield 4a, and the starting material was recovered quantitatively (entry 4). (4) Both $\left[\text{Cu}(\text{CH}_3\text{CN})_4\right]$ PF₆ and $\left[\text{Cu}(\text{CH}_3\text{CN})_4\right]$ BF₄ were effective, but CuI and $Cu(OTf)$, exhibited lower reactivity, and no reaction occurred in the absence of a Cu catalyst (see Supporting Information (SI)). (5) A slightly lower yield of 4a was obtained under air, and a significant amount of side product

Received: May 6, 2014 Published: July 1, 2014

NMR with CF_3 -DMA as internal standard. Y ield of side product $4a'$.

 a All the reactions were conducted on 0.2 mmol scale. a Isolated yields are given.

 $4a'$ was observed; less $4a$ and more $4a'$ were given under O_2 atmosphere (entries 5 and 6).

With the optimized reaction conditions in hand, we first examined the substrate scope of the styrenes, and the results are summarized in Table 2. A variety of styrenes bearing monosubstitutents on the aryl ring were initially surveyed. Both electron-donating and -withdrawing groups were compatible with this transformation, and various functional groups, such as halogen, ester, nitro, nitrile, aldehyde, ketone, and hydroxyl, were tolerated to give desired products 4a−4q in moderate to excellent yields. For the styrenes with disubstitutents on the aryl ring, including 2,6-dichlorostyrene, the reactions proceeded smoothly to generate 4r and 4s in moderate yields. The reaction of 2-vinylnaphthalene delivered 4t in 58% yield. The styrenes containing heterocycles were also suitable to produce products 4u−4w in satisfactory yields. Compared with monosubstituted styrenes, 1,1-disubstituted styrenes exhibited slightly lower reactivity to give product 4x in 45% yield. However, the cyclic styrenes exhibited good reactivities to give products 4y and 4z as a single isomer in moderate yields.

Inspired by the above results, we turned our attention to the reactivity of diverse arylboronic acids (Table 3). To our delight, a range of arylboronic acids were suitable to react with various styrenes, and a series of functional groups, such as ether, ester,

Table 3. Substrate Scope of Arylboronic Acids^{a,b}

 a All the reactions were conducted on 0.2 mmol scale. b Isolated yields are given. ^cDiastereoselectivity. ^{*d*}Regioselectivity.

halides, and CF_3 , could survive to give the desired products 5a− 5m, 4k, 4e, and 4q in good to excellent yields. Notably, the reaction of 2-OHC₆H₄B(OH)₂ proceeded smoothly to produce 5k in moderate yield. In addition, the reaction of (hetero)- $ArB(OH)_2$ also provided products 5n and 50, albeit in low yields. Finally, an estrone derivative was employed to deliver product 5p in 69% yield. A conjugated diene substrate was also compatible with this transformation, giving regioisomers 5q and 5q' in 55% yield with good regioselectivity (1:8 ratio).

The next investigation focused on the reaction of unactivated alkenes. When aliphatic alkenes 6a and 2a were treated under the above optimized reaction conditions, the desired product 7a was obtained in low yield (∼20%) and poor reproducibility. With further screening of the reaction conditions, we were delighted to find that addition of water or alcohol could significantly promote the trifluoromethylarylation reaction and give a reproducible yield. In addition, the amount of Cu catalyst could be reduced to 5 mol %. MeOH was proven to be the best additive to provide product 7a in moderate yield (51%). With the modified reaction conditions, a series of unactivated alkenes 6 with various $ArB(OH)$ ₂ 3 could be transformed to the desired products 7a−7l in satisfactory yields (Table 4). It should be noted that the side reaction of allylic C−H trifluoromethylation was hard to inhibit, and the [re](#page-2-0)lated products were observed in 10−20% yields.¹⁰

To rationalize this reaction pathway, preliminary mechanistic studies were surveyed. First, the addition of TEMPO [co](#page-3-0)uld significantly inhibit the trifluoromethylarylation reaction, yielding oxytrifluoromethylated product 8a and TEMPO−CF3 adduct 8b (eq 1). In addition, both reactions of Z -9 and E -9 afforded product 10 with the same diastereoselectivity (5:1), albeit in low yi[el](#page-2-0)ds (eq 2). These results indicated that a CF_3 radical was involved in the reaction, and a benzyl radical species was generated through t[he](#page-2-0) addition of CF_3 radical to alkenes.¹¹

 a All the reactions were conducted in 0.2 mmol scale. b Isolated yields are given. "Without MeOH.

Second, compared to the standard reaction conditions, Togni's reagent 2a was inert in the absence of $ArB(OH)_{2}$. 12 Thus, it is possible that 2a was activated by ArB(OH)₂ 3^{13} and then reacted with $Cu(I)$ to generate a $CF₃$ radical speci[es.](#page-3-0) Observation of only one CF_3 signal in the mixture of $2a$ [and](#page-3-0) $3a$ $(at -10[°]C)$ suggested a fast equilibrium existed between 2a with 3a and int.I ($2a·3a$). In addition, the CF₃ signal gradually shifted to downfield and broadened with an increase in the amount of $PhB(OH)$ ₂ (Figure 1, middle). Furthermore, the interaction of electron-poor arylboronic acid (EP-AA 3r, Figure 1, left) with 2a was stronger than that of electron-rich arylboronic acid (ER-AA 3c, Figure 1, right), which means Togni's reagent 2a with EP-AA should be more reactive with $Cu(I)$ than ER-AA.

Third, we moved our attention to the mechanism of final C−C bond formation. The electronic effect of arylboronic acids and styrenes was evaluated under the standard conditions at 25 °C. As shown in Figure 2A, ER-AA (R = OMe, Me) presented a faster reaction rate than EP-AA ($R = Cl$, $CO₂Me$). However, no significant electronic effect of styrenes was observed, with a much smaller Hammett ρ -value (−0.087, Figure 2B). In addition, the reaction rate exhibited a saturation dependence on the concentration of $PhB(OH)_{2}$ and a zero-order dependence on styrene.¹⁰ These observations implied that addition of CF_3 radical to styrenes is a fast step to generate alkyl radical int.III, and th[at](#page-3-0) this species should be involved after the ratedetermining step, while $ArB(OH)$ ₂ should be involved in the rate-determining step or before.

As we originally proposed, if the final C−C bond was derived from the intermediate of the benzyl radical (int.III) or benzyl carbon cation (int.VI) with $AFB(OH)$ ₂ (see paths c and d in Scheme 2), the reaction should involve a rate-determining $CF₃$ radical-forming step. If so, then the reaction of EP-AA should be faster since its adduct int.I is more reactive (see Figure 1), which

Figure 1. Reactions of 3 and 2a monitored by 19 F NMR.

Figure 2. Electron effect of arylboronic acids and styrenes: (A) time course of diverse $ArB(OH)$ ₂ and (B) Hammett plots of styrenes.

Scheme 2. Proposed Mechanism

is opposite the result in Figure 2A. Thus, these observations indicate that paths c and d (Scheme 2) are less likely.

Based on the above analysis, an alternative pathway involving ArCu(II) species was proposed to address the final C−C bond formation (paths a and b in Scheme 2): With treatment of activated $\text{CF}_{3}{}^+$ species int.I by Cu(I) catalyst to release CF_{3} radical, the reaction simultaneously generated a new activated arylboronic acid int.II and a $Cu(II)$ species, which could undergo transmetalation to give an ArCu(II) species (path a). The ArCu(II) could then be oxidized by alkyl radical int.III to yield a $Cu(III)$ species int. IV, 14 which delivers the final product through reductive elimination.¹⁵ Due to the saturation dependence on the concentration of $PhB(OH)_2$ $PhB(OH)_2$ $PhB(OH)_2$ and the lack of dependence on styrene, transmetalat[ion](#page-3-0) (path a) should be involved as a ratedetermining step.^{16,17} Another possible pathway involves an initial transmetalation to give $ArCu(I)$ and $int.V; ArCu(I)$ would then be oxidized [by](#page-3-0) $int.V$ $int.V$ to yield ArCu(II) and release $CF₃$ radical (path b), which can also explain the above observations.

For path a, the reaction of int.I of EP-AA with Cu(I) (k_2) is faster, but following the transmetalation step (k_3) , ER-AA is favored.^{16b} In contrast, both steps $(k_2 \text{' and } k_3 \text{'})$ are favored for ER-AA in path b. To differentiate these two possibilities, the compet[ing](#page-3-0) experiments were conducted, and no significantly

different reaction rate was observed for EP-AA and ER-AA (eq 3), which is obviously different from the individual reactions

(Figure 2A). A possible reason is that the concentration of int.II of EP-AA is higher than that of ER-AA, but the transmetalation of ER-AA (k_3) is faster than that of EP-AA. Thus, the k_3 [int.II] value of EP-AA is reasonably close to that with ER-AA, resulting in similar yields of 4a and 5 in a one-pot reaction. This observation is more consistent with path a and against path b.¹⁸

In summary, we have developed a novel copper-catalyzed intermolecular trifluoromethylarylation of alkenes under mild reaction conditions. Diverse alkenes and arylboronic acids are compatible with these conditions for efficient synthesis of CF_3 containing diarylmethane derivatives. Preliminary mechanistic studies reveal that the mutual activation process between arylboronic acid and the $\text{CF}_{3}{}^{+}$ reagent is vital to generate the initial CF₃ radical. Transmetalation of ArB(OH)₂ to Cu(II) is a key step, and the final C−C bond is derived from a Cu(III) species. Further application and more mechanistic investigation of this process are in progress.

■ ASSOCIATED CONTENT

6 Supporting Information

Experimental details and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

gliu@mail.sioc.ac.cn

Notes

[The authors declare](mailto:gliu@mail.sioc.ac.cn) no competing financial interest.

■ ACKNOWLEDGMENTS

We are grateful for financial support from 973 program (no. 2011CB808700), NSFC (nos. 21225210, 21202185, and 21121062), STCSM (11JC1415000), and the CAS/SAFEA International Partnership Program for Creative Research Teams.

■ REFERENCES

(1) (a) Smart, B. E. Chem. Rev. 1996, 96, 1555. (b) Filler, R.; Kobayashi, Y. Biomedicinal Aspects of Fluorine Chemistry; Elsevier: Amsterdam, 1982. (c) Fluorine in Bioorganic Chemistry; Welch, J. T., Eswarakrishman, S., Eds.; Wiley: New York, 1991. (d) Organofluorine Chemistry: Principles and Commercial Applications; Banks, R. E., Smart,B. E., Tatlow, J. C., Eds.; Plenum Press: New York, 1994. (e) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.

(2) Reviews of trifluoromethylation: (a) Schlosser, M. Angew. Chem., Int. Ed. 2006, 45, 5432. (b) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975. (c) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1. (d) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. (e) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950.

(3) (a) Chen, P.; Liu, G. Synthesis 2013, 45, 2919. (b) Ye, Y.; Sanford, M. S. Synlett 2012, 23, 2005. (c) Liu, T.; Shen, Q. Eur. J. Org. Chem. 2012, 34, 6679. (d) Wu, X.-F.; Neumann, H.; Beller, M. Chem.-Asian J. 2012, 7, 1744.

(4) Recent Cu-catalyzed trifluoromethylation of alkenes: (a) Parsons, A. T.; Buchwald, S. L. Angew. Chem., Int. Ed. 2011, 50, 9120. (b) Xu, J.; Fu, Y.; Luo, D.; Jiang, Y.; Xiao, B.; Liu, Z.; Gong, T.; Liu, L. J. Am. Chem.

Soc. 2011, 133, 15300. (c) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2011, 133, 16410. (d) Shimizu, R.; Egami, H.; Hamashima, Y.; Sodeoka, M. Angew. Chem., Int. Ed. 2012, 51, 4577. (e) Mizuta, S.; Galicia-López, O.; Engle, K. M.; Verhoog, S.; Wheelhouse, K.; Rassias, G.; Gouverneur, V. Chem.-Eur. J. 2012, 18, 8583. (f) Janson, P. G.; Ghoneim, I.; IIchenko, N. O.; Szabó, K. J. Org. Lett. 2012, 14, 2882. (g) Li, Y.; Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8221. (h) Yasu, Y.; Koike, T.; Akita, M. Angew. Chem., Int. Ed. 2012, 51, 9567. (i) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462. (j) Zhu, R.; Buckwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 12655. (k) Feng, C.; Loh, T.-P. Chem. Sci. 2012, 3, 3458. (l) Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.; O'Duill, M.; Wheeelhouse, K.; Rassias, G.; Médebielle, M.; Gouverneur, V. J. Am. Chem. Soc. 2013, 135, 2505. (m) Wu, X.; Chu, L.; Qing, F. Angew. Chem., Int. Ed. 2013, 52, 2198. (n) Egami, H.; Kawamura, S.; Miyazaki, A.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 7841. (o) Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2013, 52, 12414. (p) Ilchenko, N. O.; Janson, P. G.; Szabó, K. J. Chem. Commun. 2013, 49, 6614.

(5) Mu, X.; Wu, T.; Wang, H.-Y.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2012, 134, 878.

(6) (a) Egami, H.; Shimizu, R.; Sodeoka, M. J. Fluorine Chem. 2013, 152, 51. (b) Egami, H.; Shimizu, R.; Kawamura, S.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 4000.

(7) (a) Kong, W.; Casimiro, M.; Fuentes, N.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2013, 52, 13086. (b) Kong, W.; Casimiro, M.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2013, 135, 14480.

(8) (a) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X. Angew. Chem., Int. Ed. 2013, 52, 6962. (b) Chen, Z.-M.; Bai, W.; Wang, S.-H.; Yang, B.-M.; Tu, Y.-Q.; Zhang, F.-M. Angew. Chem., Int. Ed. 2013, 52, 9781. (c) Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346.

(9) (a) Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G. Angew.Chem., Int. Ed. 2014, 53, 1881. (b) Liang, Z.; Wang, F.; Chen, P.; Liu, G. J. Fluorine Chem. 2014, DOI: 10.1016/j.jfluchem.2014.04.004. (c) Ilchenko, N. O.; Janson, P. G.; Szabó, K. J. J. Org. Chem. 2013, 78, 11087. (d) He, Y.-T.; Li, L.-H.; Yang, Y.-F.; Zhou, Z.-Z.; Hua, H.-L.; Liu, X.-Y.; Liang, Y.-M. Org. Lett. 2014, 16, 270.

(10) For details, see the SI.

(11) For the side product 4a′ generation (entries 5 and 6, Table 1) from benzyl radical species and O_2 , see: Deb, A.; Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Angew. Chem., Int. Ed. 2013, 52, 9747.

(12) In the absence of arylboronic acid, no trifluoromethylation [o](#page-1-0)f alkenes occurred, and CF_3^+ reagent $2a$ was quantitatively recovered.

(13) No significant interaction between ester-type Togni's reagent 2b with 3a was observed. For details, see SI.

(14) Oxidation of $Cu(II)$ by alkyl radical to give $Cu(III)$ was also proposed: (a) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034. (b) Tran, B. L.; Li, B.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 2555.

(15) Reductive elimination of Cu(III) to form a C−C bond: (a) Wang, Z.-L.; Zhao, L.; Wang, M.-X. Chem. Commun. 2012, 48, 9418. (b) Wang, Z.-L.; Zhao, L.; Wang, M.-X. Org. Lett. 2012, 14, 1472.

(16) Slow transmetalation of $ArB(OH)_2$ to $Cu(II)$ was also reported: (a) King, A. E.; Brunold, T. C.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131, 5044. Transmetalation of ER-AA with Cu(II) exhibits a faster rate than that of EP-AA: (b) King, A. E.; Ryland, B. L.; Brunold, T. C.; Stahl, S. S. Organometallics 2012, 31, 7948.

(17) The reaction rate was increased by addition of MeOH. It is possible that adding MeOH could accelerate the transmetalation step; see SI.

(18) A reviewer raised a possible alternative pathway involving initial oxidation of Cu(I) by int.I to give $Cu^{III}CF₃$ and subsequent ratedetermining transmetalation with ArB(OH)₂. The formed ArCu^{III}CF₃ complex could further release $ArCu^H$ and $CF₃$ radical; the latter could react with alkenes to generate alkyl radical and recombine with ArCu(II) to generate int.IV. For more details, see ref 9c and the SI.